# Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins

HYDROPHOBIC INTERACTION CHROMATOGRAPHY RESINS

Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes are hydrophobic interaction chromatography (HIC) resins developed for the intermediate and polishing steps in a downstream protein purification process (Fig 1). Both chromatography resins extend the well-established Capto<sup>™</sup> platform to include high-resolution resins. By combining the high-flow characteristics of Capto<sup>™</sup> resins with a smaller particle size, Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins deliver both excellent pressure/ flow properties and resolution. The ability to run at higher flow velocities and higher bed heights increases flexibility in process design and might enable increased productivity.

Key benefits of Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins include:

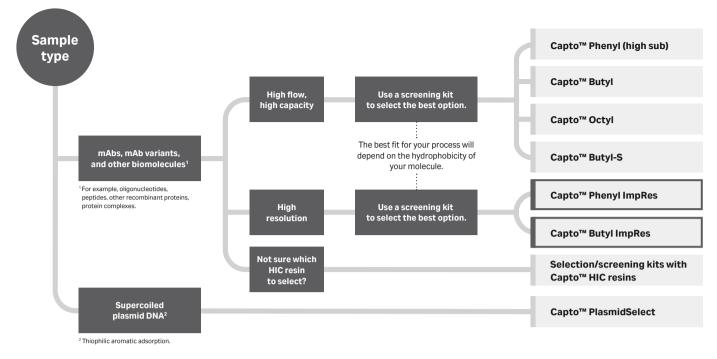
- High-resolution intermediate and polishing purification based on Capto<sup>™</sup> ImpRes base matrix with traditional HIC ligands
- Flexible process design due to a large operational window of flow velocities and bed heights
- Improved productivity and process economy in downstream operations compared with their predecessor resins based on Sepharose™ base matrix
- Excellent chemical stability

## Hydrophobic interaction chromatography

HIC separates and purifies biomolecules based on differences in surface hydrophobicity. The technique is versatile and offers specific selectivity. Many proteins and peptides, as well as other hydrophobic biomolecules have sufficient numbers of exposed hydrophobic groups to allow interaction with hydrophobic ligands coupled to chromatographic matrices.

Compared with Reversed Phase Chromatography (RPC) adsorbents, HIC resins display milder elution conditions and consequently better retention of biological activity after




**Fig 1.** Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins are supplied in various formats ranging from multiwell screening plates to large-scale prepacked columns for GMP manufacturing.

separation. HIC is well suited for use in the intermediate or polishing steps of protein purification strategies where chromatographic techniques such as ion exchange and affinity chromatography have been employed. For example, HIC makes an excellent choice for purifying material that has been precipitated with ammonium sulfate or eluted in high salt concentrations during ion exchange.

HIC is usually performed in moderate to high concentrations of salts in the starting buffer, promoting binding and helping to stabilize the protein structure. The bound molecules are eluted by decreasing the salt concentration in a linear or stepwise manner. Linear gradient elution is most frequently used when high resolution is needed, and stepwise gradient elution is recommended for sample preparation and concentration. Several factors influence the behavior of proteins and peptides on HIC resins. These include, but are not limited to, sample characteristics, type and concentration of salt, resins porosity and hydrophobicity, flow rate, temperature and pH.

Figure 2 is an overview of Cytiva Capto<sup>™</sup> HIC resins. Information about Capto<sup>™</sup> Phenyl (high sub), Capto<sup>™</sup> Butyl, Capto<sup>™</sup> Octyl, and Capto<sup>™</sup> Butyl-S resins can be found in data file CY13568.







### **Resins characteristics**

Main resins characteristics for Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes are summarized in Table 1.

|                                                  | Capto™ Phenyl ImpRes                                                                                                                                                  | Capto™ Butyl ImpRes                                  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Matrix                                           | High-flow agarose                                                                                                                                                     | High-flow agarose                                    |
| Average particle size (d <sub>50,volume</sub> )* | 40 µm                                                                                                                                                                 | 40 µm                                                |
| Ligand                                           | Phenyl                                                                                                                                                                | Butyl                                                |
| Hydrophobicity <sup>†</sup>                      | 45 to 50 min retention of lyzosyme                                                                                                                                    | 52 to 58 min retention of $\alpha$ -chymotrypsinogen |
| Flow velocity <sup>‡</sup>                       | Up to 220 cm/h in a 1 m diameter column with a bed height of 20 cm at 20°C;<br>measured using process buffers with the same viscosity as water at 300 kPa.            |                                                      |
| Binding capacity <sup>§</sup>                    | 19 mg BSA/mL resin                                                                                                                                                    | 37 mg BSA/mL resin                                   |
| pH stability (operational) <sup>¶</sup>          | pH 3 to 13                                                                                                                                                            | pH 3 to 13                                           |
| CIP stability (short term)**                     | pH 2 to 14                                                                                                                                                            | pH 2 to 14                                           |
| Chemical stability                               | Stable in commonly used aqueous buffers: 1 M sodium hydroxide <sup>††</sup> , 1 M acetic acid,<br>8 M urea, 6 M guanidine hydrochloride, 70% ethanol, 30% isopropanol |                                                      |
| Shelf life                                       | Five years                                                                                                                                                            | Five years                                           |
| Storage conditions                               | 20% ethanol at 4°C to 30°C                                                                                                                                            | 20% ethanol at 4°C to 30°C                           |

 $^{\star}$  d  $_{\rm 50,volume}$  is the median particle size of the cumulative volume distribution.

<sup>t</sup> Hydrophobic function according to method described in the *Hydrophobicity* section.

<sup>+</sup> Flow velocity is dependent on the column used.

<sup>1</sup> Long-term stability: pH interval where the resin can be operated without significant change in function.
\*\* Short-term stability: pH interval where the resin can be subjected to cleaning-in place (CIP)

without significant change in function.

<sup>5</sup> Dynamic binding capacity at 10% breakthrough measured at a residence time of 4 min (150 cm/h) in Tricorn<sup>™</sup> 5/100 column with 10 cm bed height. Buffer conditions: 0.1 M sodium phosphate buffer, 1.2 M ammonium sulfate, pH 7.

<sup>&</sup>lt;sup>11</sup> No significant change in function after one month storage in 1 M NaOH at ambient temperature.

### Bead size optimized for high-resolution polishing

Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins are based on the well-established high-flow agarose matrix, which demonstrates excellent pressure/flow properties. The rigid matrix allows for high flow velocities in modern downstream purification processes. The smaller bead size of 40 µm, employed for Capto<sup>™</sup> Phenyl and Butyl ImpRes resins, allows for increased resolution compared with HIC resins based on the larger 75 µm bead employed for Capto<sup>™</sup> Phenyl (high sub), Capto<sup>™</sup> Butyl, Capto<sup>™</sup> Octyl, and Capto<sup>™</sup> Butyl-S resins.

Results from a correlation study with six model proteins are illustrated in Figure 3. Phenyl Sepharose<sup>™</sup> High Performance resin shows slightly higher resolution compared with Capto<sup>™</sup> Phenyl ImpRes resin due to its even smaller particle size (34 µm).

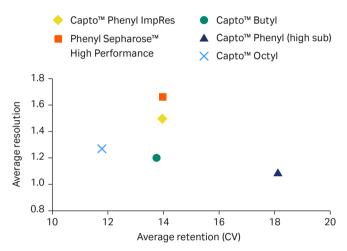



Fig 3. The average resolution of six model proteins plotted against retention volume in column volumes.

### Hydrophobicity

Figure 4 displays the relative hydrophobicities of Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins.



Increasing hydrophobicity

Fig 4. Relative hydrophobic scale of various resins, based on retention of ribonuclease A, lysozyme, and α-chymotrypsin. Can change with running conditions and proteins. The resins highlighted in green are the Capto<sup>™</sup> HIC resins, which enable optimized productivity compared to Sepharose<sup>™</sup> based resins.

### Capacity

The dynamic binding capacity (DBC) at 10% breakthrough  $(Q_{b,10})$  was determined by frontal analysis using the following parameters:

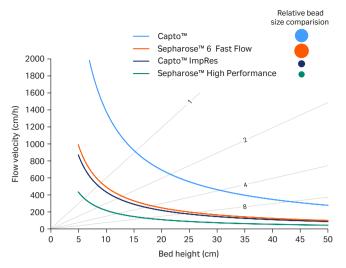
| Column:               | Tricorn™ 5/100                                  |
|-----------------------|-------------------------------------------------|
| Equipment:            | ÄKTA™ system                                    |
| Residence time:       | 4 min                                           |
| Equilibration buffer: | 1.2 M ammonium sulfate                          |
| Sample:               | BSA 3.6 mg/mL dissolved in equilibration buffer |
| Temperature:          | 23°C                                            |

Results are summarized in Table 2.

Table 2. Comparision of dynamic binding capacities at 10% breakthrough

| Resin                              | Q <sub>b,10</sub> (mg/mL) |
|------------------------------------|---------------------------|
| Phenyl Sepharose™ High Performance | 21                        |
| Capto™ Phenyl ImpRes               | 19                        |
| Butyl Sepharose™ High Performance  | 39                        |
| Capto™ Butyl ImpRes                | 37                        |

The capacity was determined at several residence times for Capto<sup>™</sup> Phenyl ImpRes resin. When decreasing the residence time from 4 min to 1 min (i.e., increasing the flow velocity to a level not suitable for Phenyl Sepharose<sup>™</sup> High Performance resin), only a 6% decrease in DBC was observed.


### **Chemical stability**

The chemical stability of Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins was determined by a total organic carbon (TOC) leakage analysis after storage in several solutions for one week at 40°C. The results showed that Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins exhibit high chemical stability, with only minor carbon leakage at very low pH. Furthermore, the products can withstand storage at pH 14 for one month with no effect on the retention time when run according to the Cytiva standard analytical method.

### Operation

### Bed heights and flow velocities

The freedom available in process design for a given chromatography resin can be defined as its "window of operation." Figure 5 shows the relationship between column bed height and operating flow velocity for Capto<sup>™</sup> ImpRes and Sepharose<sup>™</sup> High Performance matrices with Capto<sup>™</sup> and Sepharose<sup>™</sup> 6 Fast Flow resins included as references. Both resins are composed of smaller average bead sizes (40 µm vs 34 µm) and therefore display high resolution, which is used for the intermediate purification/polishing step in large-scale purification schemes. Sepharose<sup>™</sup> 6 Fast Flow and Capto<sup>™</sup> resins are composed of comparatively larger average bead sizes (90 µm vs 75 µm) and have a higher throughput but lower resolution than Capto<sup>™</sup> ImpRes resin. The size of the area under the pressure-limit curve represents the window of operation, which is the available operating range for the respective resin. As Figure 5 shows, the window of operation of the Capto<sup>™</sup> ImpRes resin fits most needs both in terms of bed height and flow velocities.



**Fig 5.** The window of operation (area under the curve) of different resins from Cytiva. Data correspond to a 1 m diameter column at 20°C and viscosity equivalent to water. Gray contours show the residence time in the column in minutes.

#### Productivity

A more rigid agarose resin allows for increased flow rates as well as the possibility to pack higher column beds, both enabling improved productivity. Increasing flow rate over the whole chromatographic purification process, (i.e., during column packing, conditioning, loading, washing, elution, regeneration, cleaning-in-place, and reconditioning) can reduce total processing time substantially. Using higher column beds with the same diameter, more protein can be purified during the same cycle, which increases throughput. For example, going from 15 cm (Sepharose<sup>™</sup> High Performance) to 20 cm (Capto<sup>™</sup> ImpRes) results in a 33% increase in resin volume and consequently 33% more protein can be processed per cycle if the capacities of the resins are the same. Altogether, the result of using more rigid chromatography resins, such as Capto<sup>™</sup> ImpRes resins, is a significant improvement in downstream process productivity.

#### Small-scale format provides fast screening and method development

Using small-scale format to screen for the most suitable chromatography process conditions in the early stages of process development saves both time and sample. Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins are available in multiple formats that are suitable for process development.

Prepacked formats for high-throughput process development (HTPD):

- PreDictor<sup>™</sup> 96-well filter plates (96 purifications in parallel under static conditions)
   PreDictor<sup>™</sup> RoboColumn<sup>™</sup> units
- (8 purifications in parallel under dynamic conditions)

Prepacked formats for method optimization and parameter screening:

- HiTrap<sup>™</sup> columns (1 or 5 mL)
- HiScreen<sup>™</sup> columns (4.7 mL)

Kits for resin variability studies:

 Process Characterization Kits (3 bottles of 25 mL, with 3 different ligand densities).

### Prepacked formats for scale-up and GMP manufacturing

Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins are also available in ReadyToProcess<sup>™</sup> column formats, which are validated high performance prepacked columns for scale-up and GMP biomanufacturing.

#### **Cleaning and sanitization**

Cleaning-in-place (CIP) is a procedure that removes tightly bound impurities and contaminants, such as lipids, precipitates, or denatured proteins, generated from the sample and that can remain in the column after regeneration. Regular CIP prevents the build-up of these contaminants and also helps maintain the capacity, flow properties, and general performance of the resin. A specific CIP protocol should be designed for each process according to the type of contaminants that are present in the feed stream. General recommendation for CIP and sanitization protocols for all Cytiva HIC resins is to use 1 M NaOH. Use of a water-diluted organic solvent, such as ethanol or isopropanol, can be efficient in breaking strong hydrophobic interactions during CIP.

### Storage

Capto<sup>™</sup> Phenyl ImpRes and Capto<sup>™</sup> Butyl ImpRes resins are supplied as a suspension containing 20% ethanol as preservative. Recommended storage condition is in 20% ethanol at temperatures between 4°C and 30°C.

### **Additional reading**

Visit our website to explore our application notes showcasing our Capto^ ${\ensuremath{^{\rm M}}}$  HIC resins.

- Application note: Increasing productivity in hydrophobic interaction chromatography (HIC) using Capto<sup>™</sup> resins
- Application note: Developing a HIC polishing step for removal of mAb aggregates
- Application note: Optimization of a HIC step with HTPD
- Packing instruction: How to pack Capto<sup>™</sup> HIC resins in AxiChrom<sup>™</sup> columns
- HIC resource center

### Ordering information

### Multiple resins (screening kits)

| Format                                                                                                                                                                                                                                                                                           | Quantity                  | Product code |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|
| HiTrap™ Capto™ HIC selection kit                                                                                                                                                                                                                                                                 | 5 × 1 mL                  | 29321087     |
| Kit includes the following<br>Capto <sup>™</sup> HIC resins: Capto <sup>™</sup> Phenyl<br>(high sub), Capto <sup>™</sup> Phenyl ImpRes,<br>Capto <sup>™</sup> Butyl, Capto <sup>™</sup> Butyl ImpRes<br>and Capto <sup>™</sup> Octyl. Prepacked,<br>ready-to-use 1 mL HiTrap <sup>™</sup> column |                           |              |
| PreDictor™ Capto™ HIC<br>Screening Kit                                                                                                                                                                                                                                                           | 6 μL, 4 × 96 well plates  | 29711438     |
|                                                                                                                                                                                                                                                                                                  | 20 µL, 4 × 96 well plates | 29711439     |
| Kit includes the following<br>Capto <sup>™</sup> HIC resins: Capto <sup>™</sup> Phenyl<br>(high sub), Capto <sup>™</sup> Phenyl ImpRes,<br>Capto <sup>™</sup> Butyl, Capto <sup>™</sup> Butyl ImpRes<br>Capto <sup>™</sup> Octyl, and Capto <sup>™</sup> Butyl-S                                 | З,                        |              |

### Capto<sup>™</sup> Phenyl ImpRes

| Format                       | Quantity                                       | Product code |
|------------------------------|------------------------------------------------|--------------|
| Bulk                         | 25 mL                                          | 17548401     |
|                              | 100 mL                                         | 17548402     |
|                              | 1 L                                            | 17548403     |
|                              | 5 L                                            | 17548404     |
| HiTrap™ column               | 5 × 1 mL                                       | 17548411     |
|                              | 5 × 5 mL                                       | 17548412     |
| HiScreen™ column             | 1 × 4.7 mL                                     | 17548410     |
| PreDictor™ Plate             | 6 μL, 4 × 96-well<br>filter plates             | 29711440     |
|                              | 20 µL, 4 × 96-well<br>filter plates            | 29711441     |
| PreDictor™ RoboColumn™ unit  | 200 µL, 8 columns                              | 29701638     |
|                              | 600 µL, 8 columns                              | 17548441     |
| Process Characterization Kit | 3 × 25 mL<br>(3 different ligand<br>densities) | 17548470     |
| ReadyToProcess™ column       | 1 L (80/200)                                   | 29101697     |
|                              | 1.9 L (126/150)                                | 29609021     |
|                              | 2.5 L (126/200)                                | 29101698     |
|                              | 5 L (178/200)                                  | 29642661     |
|                              | 7.4 L (251/150)                                | 29696391     |
|                              | 10 L (251/200)                                 | 29101700     |
|                              | 20 L (359/200)                                 | 29101702     |
|                              | 32 L (450/200)                                 | 29256253     |
|                              | 57 L (600/200)                                 | 29649594     |

### Capto™ Butyl ImpRes

| Format                       | Quantity                                       | Product code |
|------------------------------|------------------------------------------------|--------------|
| Bulk                         | 25 mL                                          | 17371901     |
|                              | 100 mL                                         | 17371902     |
|                              | 1 L                                            | 17371903     |
|                              | 5 L                                            | 17371904     |
| HiTrap™ column               | 5 × 1 mL                                       | 17371911     |
|                              | 5 × 5 mL                                       | 17371912     |
| HiScreen™ column             | 1 × 4.7 mL                                     | 17371910     |
| PreDictor™ Plate             | 6 µL, 4 × 96-well<br>filter plates             | 29711442     |
|                              | 20 µL, 4 × 96-well<br>filter plates            | 29711443     |
| PreDictor™ RoboColumn™ unit  | 200 µL, 8 columns                              | 29701637     |
|                              | 600 µL, 8 columns                              | 17371941     |
| Process Characterization Kit | 3 × 25 mL<br>(3 different ligand<br>densities) | 17371970     |
| ReadyToProcess™ column       | 1 L (80/200)                                   | 29713752     |
|                              | 2.5 L (126/200)                                | 29655954     |
|                              | 5 L (178/200)                                  | 29647159     |
|                              | 10 L (251/200)                                 | 29138138     |
|                              | 20 L (359/200)                                 | 29229399     |
|                              | 32 L (450/200)                                 | 29256254     |
|                              | 57 L (600/200)                                 | 29474655     |

### **Related literature**

| Data file: Capto™ Phenyl (high sub), Capto™ Butyl,<br>Capto™ Octyl, and Capto™ Butyl-S | CY13568 |
|----------------------------------------------------------------------------------------|---------|
| Data file: HiScreen™ prepacked columns                                                 | CY13473 |
| Data file: PreDictor™ 96-well filter plates and Assist software                        | CY13663 |
| Data file: PreDictor™ RoboColumn™                                                      | CY13689 |
| Data file: ReadyToProcess™ columns                                                     | CY11724 |
| Handbook: Hydrophobic interaction and reversed phase chromatography                    | CY11248 |

### cytiva.com

For local office contact information, visit cytiva.com/contact Cytiva and the Drop logo are trademarks of Life Sciences IP Holdings Corp. or an affiliate doing business as Cytiva. ÄKTA, Capto, HiScreen, HiTrap, PreDictor, ReadyToProcess, Sepharose, and Tricorn are trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva. RoboColumn is a trademark of Repligen GmbH. Any other third-party trademarks are the property of their respective owners. © 2020–2023 Cytiva

CY13700-11May23-DF

