

Convenient purification of monoclonal antibodies using HiTrap rProtein A FF

Intellectual Property Notice: The Biopharma business of GE Healthcare was acquired by Danaher on 31 March 2020 and now operates under the Cytiva™ brand. Certain collateral materials (such as application notes, scientific posters, and white papers) were created prior to the Danaher acquisition and contain various GE owned trademarks and font designs. In order to maintain the familiarity of those materials for long-serving customers and to preserve the integrity of those scientific documents, those GE owned trademarks and font designs remain in place, it being specifically acknowledged by Danaher and the Cytiva business that GE owns such GE trademarks and font designs.

cytiva.com

GE and the GE Monogram are trademarks of General Electric Company.

Other trademarks listed as being owned by General Electric Company contained in materials that pre-date the Danaher acquisition and relate to products within Cytiva's portfolio are now trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva.

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. All other third-party trademarks are the property of their respective owners. © 2020 Cytiva

All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information.

For local office contact information, visit $\underline{\text{cytiva.com/contact}}$

Convenient Purification of Monoclonal Antibodies using HiTrap rProtein A FF

M. Carlsson, A. Heijbel, and A-C. Häggqvist GE Healthcare AB, Björkgatan 30, SE-751 84 Uppsala, Sweden

Abstract

Purification of monoclonal antibodies can be achieved by a number of methods, protein A affinity chromatography being especially powerful. HiTrap™ rProtein A FF is a prepacked column for the purification of monoclonal antibodies in a quick, easy, and convenient way. The work presented shows different applications using HiTrap rProtein A FF 1 ml and 5 ml columns. Mouse monoclonal antibodies were purified from cell cultures and ascitic fluids. The purifications were performed using either a syringe or chromatography system.

Humanized IgG_4 was purified directly from a myeloma cell culture resulting in a highly purified antibody at a yield of 93%. The capacity for a mouse IgG_{2a} purified from cell culture supernatant was 18 mg/ml medium at a flow rate of 624 cm/h (4 ml/min on a 1 ml column), showing the high capacity of HiTrap rProtein A FF at high flow rates. All purified monoclonals were >95% pure according to analysis by SDS-PAGE and silver staining. The optimum binding conditions for a mouse IgG_1 were investigated in a series of scouting experiments performed on ÄKTAexplorer. This particular antibody was efficiently bound to HiTrap rProtein A FF in a phosphate buffer containing 0.15 M NaCl at neutral pH.

Introduction

Purification of monoclonal antibodies is required for many applications in numerous fields of science and technology. Protein A affinity chromatography is well known as one of the most efficient techniques for the purification of monoclonal antibodies. Due to the high specificity of protein A for immunoglobulins, high product purity is achieved within one chromatographic step.

A rapid and convenient way to purify monoclonal antibodies is to use HiTrap rProtein FF columns. This prepacked, ready to use column, 1 ml or 5 ml, contains rProtein A Sepharose™ Fast Flow. The ligand, recombinant protein A, has been specially engineered with a C-terminal cysteine to allow the formation of a stable thioether link between the ligand and the base matrix. Terminal coupling allows the ligand to exert maximum binding capacity for IgG.

Using HiTrap rProtein A FF, monoclonal antibodies from cell cultures and ascitic fluids can easily be prepared to high purity in a single step. The column can either be operated by a simple syringe, or by coupling it to a chromatographic system. To achieve even higher binding capacities one run, several HiTrap rProtein A FF columns can be connected together.

Conclusions

- HiTrap rProtein A FF provides rapid and convenient preparative purification of monoclonal antibodies from cell cultures and ascitic fluids.
- High product purity (>95%) is achieved within one chromatographic step.
- High binding capacities are obtained even at high
 flow rates.
- HiTrap rProtein A FF can be operated with a simple syringe or by connecting it to a chromatographic system, such as ÄKTAexplorer.

Material & Methods

HiTrap rProtein A FF, 1 ml or 5 ml Columns:

Different cell culture supernatants or Samples:

ascitic fluids containing different

subclasses of IgG

Filtered through a Millipore Millex® Sample pre-treatment:

0.45 µm filter

Binding buffer: 0.02 M sodium phosphate, pH 7.0

(incl. 3 M NaCl for mouse IgG.)

Elution buffer: 0.1 M sodium citrate, pH 3.0

Neutralizing buffer: 1 M Tris-HCl, pH 9.0

Fraction treatment: 200 µl neutralizing buffer/ml collected

eluted fraction

Characteristics of HiTrap rProtein A FF

Column dimensions.

i.d. x h: $0.7 \times 2.5 \text{ cm} (1 \text{ ml})$ $1.6 \times 2.5 \text{ cm } (5 \text{ ml})$

recombinant protein A, (E. coli) Ligand:

Coupling chemistry: ероху

Degree of substitution: ≈ 6 mg rProtein A/ml medium Total binding capacity: ≈ 50 mg human IgG/ml medium

Dynamic binding capacity for some

monoclonal antibodies*:

23 mg mouse IgG₂₀/ml medium 12 mg mouse IgG₁/ml medium 11 mg humanised IgG,/ml medium

Average particle size: 90 µm

Bead structure: highly cross-linked 4% agarose

Maximum backpressure: 3 bar, 0.3 MPa

Maximum flow rate at

room temperature:

4 ml/min (624 cm/h) and 20 ml/min (600 cm/h) for 1 and 5 ml columns,

respectively

Recommended flow rate: 1 ml/min (156 cm/h) and 5 ml/min

(150 cm/h) for 1 and 5 ml columns,

respectively

Chemical stability: All commonly used buffers

pH stability:

Working 3-10 2**-11 Cleaning

Temperature stability:

Working 4°C-40°C Storage 4°C-8°C Storage buffer: 20% ethanol

Running conditions:

HiTrap rProtein A FF 1 ml Column: Sample cell culture supernatants

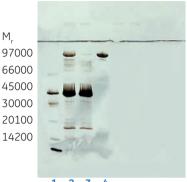
20 mM sodium phosphate (incl. 3 M NaCl for IgG1), pH 7.0. Binding buffer:

Flution buffer 0.1 M sodium citrate, pH 3.0

1 ml/min. Flow rate:

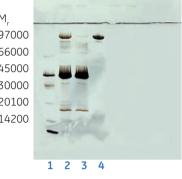
** pH below 3 is sometimes required to elute strongly bound Ig's. However, protein ligands may hvdrolvze at very low pH

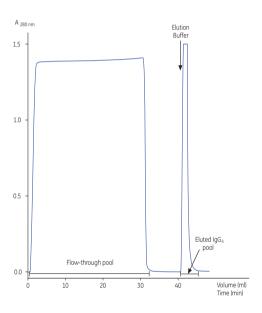
Applications


Purification of humanized IgG, from a myeloma cell culture

Column: HiTrap rProtein A FF 1 ml Sample volume:

30 ml containing 12 mg lgG₄ The sample was a kind gift from Dr. J. Bonnerjea, LONZA Biologics plc, UK


Binding buffer: 0.02 M sodium phosphate, pH 7.0 0.1 M sodium citrate, pH 3.0 Elution buffer: Flow rate:


1 ml/min (156 cm/h)

SDS-PAGE

Lane 1: Low Molecular Markers Lane 2: Starting material Flow-through pool Lane 3: Eluted IgG, poo I ane 4

Result

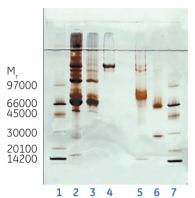
Eluted amount of IgG,: 11.2 mg

Yield: 93%

Purity: > 95% according to SDS-PAGE

Purification of mouse IgG, from ascitic fluid using a syringe

Column: HiTrap rProtein A FF 1 ml


Sample volume:

1 ml (0.5 ml ascites diluted with 0.5 ml binding buffer) The sample was a kind gift from Dr. N. Linde, EC Diagnostics, Sweden

Binding buffer: 0.02 M sodium phosphate, 3 M NaCl, pH 7.0

Elution buffer: 0.1 M sodium citrate, pH 3.0

Flow rate: ≈ 1 ml/min Instrumentation: Syringe

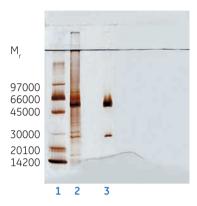
SDS-PAGE

Low Molecular Markers Lane 1: Lane 2: Starting material, dil. 20× Lane 3: Flow-through pool, dil. 5×

Eluted IgG₁ pool, Flow-through pool, Lane 4: Lane 5: dil. 5×, reduced Eluted IgG1 pool, Lane 6:

reduced

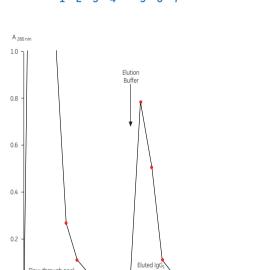
Volume (ml)


Lane 7: Low Molecular Markers

HiTrap rProtein A FF 1 ml Column:

Sample volume: 150 ml

Binding buffer: 0.02 M sodium phosphate, pH 7.0 Elution buffer: 0.1 M sodium citrate, pH 3.0 Flow rate: 4 ml/min (624 cm/h)

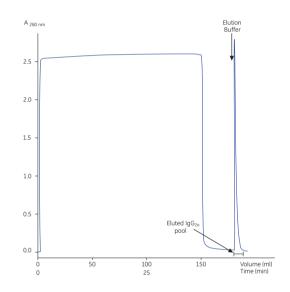

SDS-PAGE

Low Molecular Markers Lane 1: reduced

Starting material, reduced Lane 2:

Eluted IgG_{2a} pool, dil. $3\times$, Lane 3:

reduced


12

10

Result

0.0

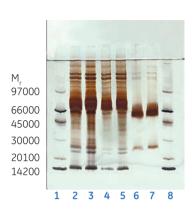
Eluted amount of IgG₁: 1.1 mg Purity: > 95% according to SDS-PAGE

Result

Eluted amount of IgG_{2a} : 18.2 mg Purity: > 95% according to SDS-PAGE

Purification of mouse IgG_{2a} from ascitic fluid

Column: HiTrap rProtein A FF 1 ml


Sample volume: 7 ml (3.5 ml ascites diluted with 3.5 ml binding buffer)

Binding buffer: 0.02 M sodium phosphate, 3 M NaCl, pH 7.0

Elution buffer: 0.1 M sodium citrate, pH 3.0

Flow rates:

sample application 0.5 ml/min (78 cm/h) wash and elution 1 ml/min (156 cm/h)

SDS-PAGE

Lane 1: Low Molecular Markers,

reduced

Lane 2: Starting material,

dil. 40×, reduced

Lane 3: Starting material, dil. 20×, reduced

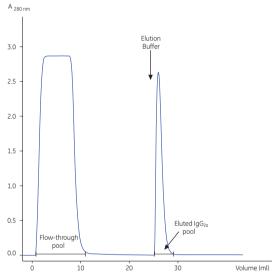
Lane 4: Flow-through pool,

dil. 20×, reduced

Lane 5: Flow-through pool,

dil. 10×, reduced

Lane 6: Eluted IgG_{2a} pool,


dil. 10×, reduced

Lane 7: Eluted IgG_{2a} pool,

dil. 5×, reduced

Lane 8: Low Molecular Markers,

reduced

Result

Eluted amount of IgG_{2a} : 14.5 mg Purity: > 95% according to SDS-PAGE

Scouting for binding conditions using ÄKTAexplorer with BufferPrep*

The concentration of NaCl in the binding buffer was varied over the range 0.15 M to 2.5 M at constant pH.

Column: HiTrap rProtein A FF 5 ml

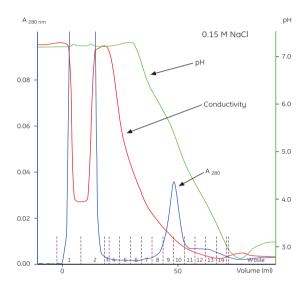
Sample: Cell culture supernatant containing mouse IgG,

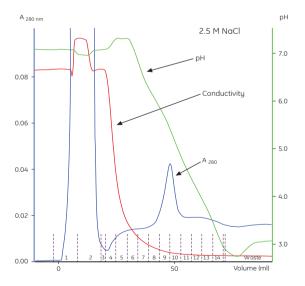
Sample volume: 8 ml

Flow rate: 2 ml/min (60 cm/h)
Instrumentation: ÄKTAexplorer

BufferPrep solutions:

1. Buffer stock 0.1 M sodium phosphate, 0.1 M sodium citrate

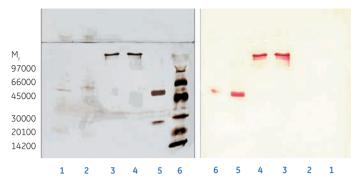

2. Acid stock 0.2 M HCl


3. Salt stock 5 M NaCl 4. Water

Salt concentrations

in the binding buffers: 0.15, 0.5, 1.0, 1.5, 2.0 and 2.5 M. pH of binding buffer 7.4

* A. Holtz, Phadia, Sweden is gratefully acknowledged for performing these experiments.



SDS-PAGE and Western Blotting from the 0.15 M NaCl run

Lane 1: Flow-through fraction 2
Lane 2: Flow-through fraction 2, reduced

Lane 3: Eluate, fraction 9
Lane 4: Eluate, fraction 10
Lane 5: Eluate, fraction 10, reduced
Lane 6: Low Molecular Markers

Result

The same amount of this particular IgG_1 bound at all NaCl concentrations tested. SDS-PAGE analysis of the eluted fractions from the run, using 0.15 M NaCl, shows that the purified monoclonal is over 95% pure. Western blotting confirms that no antibody is in the flow-through material.

Analysis

Concentration determination

Absorbance measurement at 280 nm using Ultrospec Plus:

$$A_{280}^{1\%} = 14$$

Purity check:

SDS-PAGE electrophoresis

Gel: PhastGel™ Gradient 10–15,

Sample

pretreatment: Dilution 1:5 with 15% SDS, 60 mM Tris,

6 mM EDTA, 0.06% Bromophenol Blue, pH 8.0 2-mercaptoethanol (final conc. 6%) was added

when run under reducing conditions

Heating, 5 min., 90°C

Sample volume: $1 \, \mu l$

Molecular weight

standard: Low Molecular Markers

Staining: Silver, according to the standard

protocol for PhastSystem™

Instrumentation: PhastSystem

www.gelifesciences.com/hitrap www.gelifesciences.com/protein-purification

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden GE, imagination at work, and GE monogram are trademarks of General Electric Company.

ÄKTAexplorer, Drop Design, HiTrap, PhastGel, PhastSystem, and Sepharose are trademarks of GE Healthcare companies.

All third party trademarks are the property of their respective owners.

 $\hbox{@ }1997\mbox{-}2007$ General Electric Company – All rights reserved. First published 1997.

All goods and services are sold subject to the terms and conditions of sole of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Europe GmbH Munzinger Strasse 5, D-79111 Freiburg, Germany

GE Healthcare UK Ltd

 $\label{thm:eq:amersham} \textit{Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK}$

GE Healthcare Bio-Sciences Corp 800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Bio-Sciences KK Sanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan

Asia Pacific T +85 65 62751830 F +85 65 62751829 * Australasia T +61 2 8820 8299 F +61 2 8820 8209 * Austria T 01/57606 1613 F 01/57606 1614 * Belgium T 0800 73 890 F 02 416 8206 * Canada T 1 800 463 5800 F 1 800 567 1008 * Central & East Europe T +43 1 972 720 F +43 1 972 722 750 * Denmark T +45 70 25 24 50 F +45 45 16 2424 * Eire T 1 800 709992 F +44 1494 542010 * Finland & Baltics T +358 9 512 3940 F +358 9 512 39439 * France T 01 69 35 67 00 F 01 69 41 98 77 Germany T 0800 9080 711 F 0800 9080 712 * Greater China T +852 2100 6300 F +852 2100 6338 * Italy T 02 2601 320 F 02 2601 339 * Japan T 81 3 5331 9330 * Korea T 82 2 6201 3700 F 82 2 6201 3803 * Lottin America T +551 13933 7300 F +55 11 3933 7304 * Middle East & Africa T +30 210 96 00 687 F +30 210 96 00 693 * Netherlands T 0800-82 82 82 1 F 0800-82 82 82 4 * Norway T +47 815 65 777 F +47 815 65 666 * Portugal T 21 417 7355 F 21 417 3184 * Russio, CIS & NIS T +7 495 956 5177 F +7 495 956 5176 Spain T 902 117 265 F 935 94 49 65 * Sweden T 018 612 1910 * F 018 612 1910 * Switzerland T 0848 8028 10 F 0848 8028 10 F

