

Rapid purification of GST-tagged proteins from large sample volumes

Intellectual Property Notice: The Biopharma business of GE Healthcare was acquired by Danaher on 31 March 2020 and now operates under the Cytiva™ brand. Certain collateral materials (such as application notes, scientific posters, and white papers) were created prior to the Danaher acquisition and contain various GE owned trademarks and font designs. In order to maintain the familiarity of those materials for long-serving customers and to preserve the integrity of those scientific documents, those GE owned trademarks and font designs remain in place, it being specifically acknowledged by Danaher and the Cytiva business that GE owns such GE trademarks and font designs.

cytiva.com

GE and the GE Monogram are trademarks of General Electric Company.

Other trademarks listed as being owned by General Electric Company contained in materials that pre-date the Danaher acquisition and relate to products within Cytiva's portfolio are now trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva.

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. All other third-party trademarks are the property of their respective owners. © 2020 Cytiva

All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information.

For local office contact information, visit cytiva.com/contact

Rapid purification of GST-tagged proteins from large sample volumes

Lars Haneskog, Anna Heijbel, and Hans J. Johansson, GE Healthcare, Uppsala, Sweden Johan Öhman and Eva Rupp-Thuresson, Bivitrum, Stockholm, Sweden

Introduction

The expression of recombinant proteins or domains fused to Glutathione S-transferase (GST) using the pGEX vectors allows for easy purification by affinity chromatography on Glutathione Sepharose™ under mild conditions. The GST-tag can be removed by a site-specific protease either on the column before elution, or after elution. We have developed a chromatography medium, Glutathione Sepharose 4 Fast Flow, for purification of GST-tagged proteins. It has high binding capacity for GST (10 mg/ml medium), and high rigidity makes the medium suitable for large-scale chromatography.

A GST-tagged protein was purified and cleaved by protease on a GSTrap™ FF 5-ml prepacked column to obtain a pure protein without the GST-tag. A second GST-tagged protein, expressed at a low level, was rapidly purified on a 34-ml column by application of a large sample volume at a high flow rate. The high volumetric flow rate allowed preparation to be done four times faster than before.

Summary and conclusions

- One-step purification on GSTrap FF was used to obtain a highly pure SH2 domain. SH2 was expressed as a GST-tagged protein and purified with on-column proteolytic removal of the GST-tag.
- Glutathione Sepharose 4 Fast Flow was used for rapid purification of a GST-tagged glycoprotein (expressed at a low level) by the application of a large sample volume to the column. This procedure offers a realistic alternative to the need to obtain higher expression levels by the optimization of the fermentation process or the preparation of a new gene construct.

Materials and methods

Samples

- 1. Clarified homogenate of *E. coli* containing the SH2 domain of a phosphatase fused with GST (SH2-GST) (M, 37 000).
- 2. Clarified medium from a culture of Human Embryo Kidney cells (HEK293) expressing a M_r 120 000 glycosylated and secreted protein. Preliminary experiments revealed expression levels of 0.5 to 1.5 µg GST-tagged protein per ml of culture medium.

Chromatography

Chromatography was done at room temperature on Glutathione Sepharose 4 Fast Flow using ÄKTAexplorer™ 10 and ÄKTAexplorer 100. GSTrap FF 1-ml and GSTrap FF 5-ml prepacked columns were used for purification and on-column cleavage of SH2-GST.

A 34-ml Glutathione Sepharose 4 Fast Flow medium bed $(1.6 \times 17 \text{ cm})$ was packed in a XK 16/20 column and used for purification of the low-expressed eukaryotic protein.

On-column cleavage with protease

After sample application and wash, the GSTrap FF 5-ml column was disconnected from the ÄKTAexplorer and filled using a syringe with 7 ml of 20 U/ml thrombin protease from GE Healthcare in binding buffer. The column was reconnected and left overnight (14 hours) at room temperature before elution.

Mass spectrometry analysis

A desalted sample of purified SH2 domain was adjusted to 50% acetonitrile/0.5% trifluoroacetic acid, before mixing with saturated sinapinic acid in 50% acetonitrile/0.5% trifluoroacetic acid, and air drying. Mass spectrometry analyses were performed in linear m/z window on a MALDI-TOF-MS instrument.

Results

Purification and on-column cleavage of an SH2-GST fusion protein

Chromatography of 2 ml of clarified *Escherichia coli* (*E. coli*) homogenate on GSTrap FF 1-ml, for estimation of expression level, yielded about 2 mg of SH2-GST fusion protein (Fig 1A). The eluted material mostly contained SH2-GST, although a small amount of GST was detected (Fig 1B). No detectable contaminants were recovered.

Column: Sample: Binding buffer: Elution buffer:

Flow rate: Sustem: GSTrap FF, 1 ml 2 ml clarified $E.\ coli$ homogenate expressing a M $_{\rm r}$ 37 000 SH2-GST fusion protein 150 mM NaCl, 20 mM phospate buffer, pH 7.3 20 mM reduced glutathione, 50 mM Tris-HCl, pH 8.0 2 ml/min (sample application and washing) and 0.5 ml/min (elution)

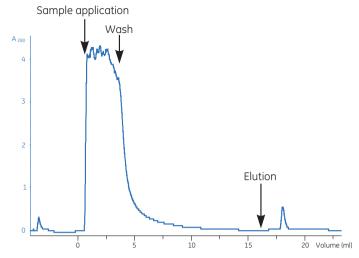


Fig 1A. Purification of SH2 phosphatase domain-GST fusion protein.

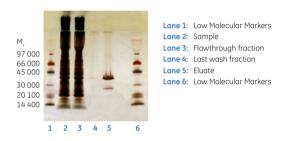
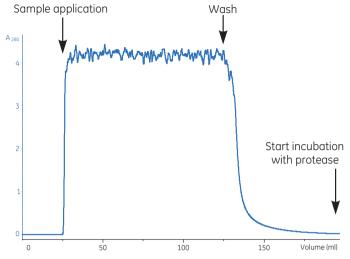


Fig 1B. SDS-PAGE analysis on PhastGel™ Gradient 8–25, silver staining.

To obtain the pure SH2 domain without its GST-tag, chromatography was scaled-up on GSTrap FF 5 ml, and oncolumn cleavage was done overnight with thrombin before elution of released SH2 domain with binding buffer (Fig 2A). The eluted SH2 domain fraction contained 2 mg of protein and the GST fraction eluted by glutathione contained 4 mg. SDS-PAGE indicated that the prepared SH2 domain was pure and that the protease cleavage was complete (Fig 2B). Mass spectrometry revealed essentially two peaks corresponding to the single-charged (m/z 12 472) and double-charged protein (m/z 6 241), which agrees with the expected $\rm M_{r}$ of the SH2 domain (Fig 3). The spectra contained no other peaks in the m/z window used (insert in Fig 3).

Column: GSTrap FF, 5 ml


100 ml clarified *E. coli* homogenate expressing a M_r 37 000 SH2-GST fusion protein Sample Binding buffer:

150 mM NaCl, 20 mM phospate buffer, pH 7.3 Elution buffer: 10 mM reduced glutathione, 50 mM Tris-HCl, pH 8.0

20 U/ml thrombin protease (GE Healthcare) for 14 hours at room temperature Protease treatment:

10 ml/min (sample application and washing) and 2.5 ml/min (elution) Flow rate:

System:

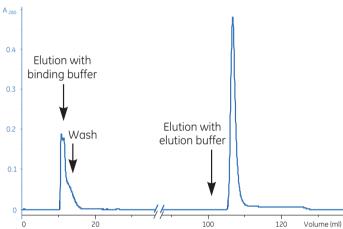


Fig 2A. Purification of SH2 domain with concomitant removal of the GST-tag.

Lane 2: Sample Lane 3: Flowthrough fraction Lane 4: Last wash fraction

Lane 5: Eluate with cleaved-off material eluted with binding buffer, first part of peak Lane 6: as lane 5, middle part of peak

Lane 7: as lane 5, latter part of peak Lane 8: Eluate desorbed by elution buffer

Fig 2B. SDS-PAGE analysis on PhastGel Gradient 8–25, silver staining.

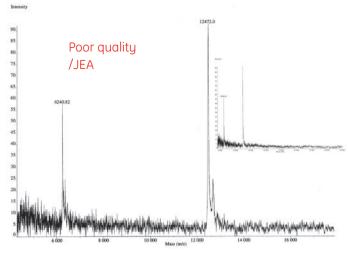


Fig 3. MALDI-TOF-MS analysis of the SH2 domain.

Purification of a eukaryotic GST-tagged protein for crystallography

A large volume (1.5 liters) of clarified cell culture medium from HEK293 cells expressing small amounts of a M, 120 000 glycosylated and secreted protein was applied to a 34-ml Glutathione Sepharose 4 Fast Flow column. The column was washed with binding buffer and 1 mg of pure protein was eluted by a step-gradient of glutathione (Fig 4), all within five hours. The protein was concentrated by ultrafiltration (cut-off M, 10 000) and used for successful crystallization trials (Fig 5).

Column: 1.6 x 17 cm Glutathione Sepharose 4 Fast Flow (34 ml) packed in 1500 ml clarified cell culture medium HEK293 expressing Sample: a M, 120 000 glycosylated and secreted protein Binding buffer: Flution buffer: Flow rate:

10 ml/min (sample application and washing) and 1 ml/min (elution)

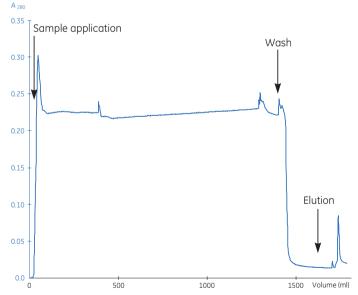
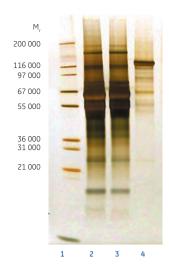



Fig 4A. Purification of low-expressed eukaryotic protein.

Lane 1: Low Molecular Markers

Lane 2: Sample

Lane 3: Flowthrough fraction

Lane 4: Eluate

Fig 5. Crystals of the eukaryotic GST-tagged protein obtained in the initial crystallization trial.

Fig 4B. SDS-PAGE analysis on 4% to 12% gel followed by silver staining.

www.gehealthcare.com/hitrap

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden

ÄKTAexplorer, Drop Design, Sepharose, PhastGel, and GSTrap are trademarks of GE Healthcare companies. GE, imagination at work, and GE monogram are trademarks of General Electric Company.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare that supplies them. General Electric Company reserves the right, subject to any regulatory and contractual approval, if required, to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your local GE Healthcare representative for the most current information.

© 2006 General Electric Company – All rights reserved.

GE Healthcare Bio-Sciences AB, a General Electric Company.

GE Healthcare Europe GmbH Munzinger Strasse 5, D-79111 Freiburg, Germany

GE Healthcare UK Ltd

Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK

GE Healthcare Bio-Sciences Corp

800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Bio-Sciences KK

Sanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan

Asia Pacific Tel +85 65 62751830 Fax +85 65 62751829 • Australasia Tel +61 2 8820 8299 Fax +61 2 8820 8299 Fax +61 2 8820 8200 • Austria Tel 01 / 57606 1613 Fax 01 / 57606 1614 • Belgium Tel 0800 73 890 Fax 02 416 8206 • Canada Tel 1 800 463 5800 Fax 1 800 567 1008 • Central & East Europe Tel +33 1972 720 Fox +43 1 972 7275 • Denmark Tel +45 70 22 45 0 Fox +45 45 16 2424 • Eire Tel 1 800 709992 Fox +44 1494 542010 • Finland & Baltics Tel +358 9 512 3940 Fox +358 9 512 39439 • France Tel 01 69 35 67 00 Fox 01 69 41 98 77 • Germany Tel 0800 9080 711 Fox 0800 9080 712 • Greater China Tel +852 2100 6300 Fox +852 2100 6338 • Italy Tel 02 26001 390 • Japon Tel 81 3 5331 9376 Fox 81 3 5331 9370 • Korea Tel 82 2 6201 3700 Fox 82 26201 3803 • Latin America Tel +551 13393 7304 • Middle East & Africa Tel +872 100 96 0068 Fox +30 210 96 00687 • Netterlands Tel 0800-82 82 82 16 Fox 40 82 8020 18 20 Fox 47 81 56 5666 • Portugal Tel 21 417 7035Fox 21 417 3184 • Russia, CIS & NIS Tel +7 495 956 5177 Fox +7 495 956 5176 • Spain Tel 902 11 72 65 Fox 935 94 49 65 • Sweden Tel 018 612 1900 Fox 018 612 1910 • Switzerland Tel 0848 8028 10 Fox 0848 8028 11 • UK Tel 0800 515 313 Fax 0800 616 927 • USA Tel +1 800 526 3593 Fax +1 877 295 8102

